ELECTRIC UTILITY COST ALLOCATION MANUAL

January, 1992

NATIONAL ASSOCIATION OF REGULATORY UTILITY COMMISSIONERS 1102 Interstate Commerce Commission Building Constitution Avenue and Twelfth Street, NW Post Office Box 684 Washington, DC 20044-0684

Telephone No. (202) 898-2200
Facsimile No. (202) 898-2213
Price: \$25.00

To ensure that costs are properly allocated, the analyst must first classify each account as demand-related, customer-related, or a combination of both. The classification depends upon the analyst's evaluation of how the costs in these accounts were incurred. In making this determination, supporting data may be more important than theoretical considerations.

Allocating costs to the appropriate groups in a cost study requires a special analysis of the nature of distribution plant and expenses. This will ensure that costs are assigned to the correct functional groups for classification and allocation. As indicated in Chapter 4, all costs of service can be identified as energy-related, demand-related, or cus-tomer-related. Because there is no energy component of distribution-related costs, we need consider only the demand and customer components.

To recognize voltage level and use of facilities in the functionalization of distribution costs, distribution line costs must be separated into overhead and underground, and primary and secondary voltage classifications. A typical functionalization and classification of distribution plant would appear as follows:

Substations: Distribution:

Services:

Meters:
Street Lighting:
Customer Accounting:
Sales:
Demand Overhead Primary
Demand Customer
Overhead Secondary
Demand Customer
Underground Primary
Demand
Customer
Underground Secondary
Demand
Customer
Line Transformers
Demand
Customer
Overhead
Dernand
Customer
Underground
Bemand
Customer
Customer
Customer
Customer
Customer

From this breakdown it can be seen that each distribution account must be analyzed before it can be assigned to the appropriate functional category. Also, these accounts must be classified as demand-related, customer-related, or both. Some utilities assign distribution to customer-related expenses. Variations in the demands of various customer groups are used to develop the weighting factors for allocating costs to the appropriate group.

II. DEMAND AND CUSTOMER CLASSIFICATIONS OF DISTRIBUTION PLANT ACCOUNTS

When the utility installs distribution plant to provide service to a customer and to meet the individual customer's peak demand requirements, the utility must classify distribution plant data separately into demand- and customer-related costs.

Classifying distribution plant as a demand cost assigns investment of that plant to a customer or group of customers based upon its contribution to some total peak load. The reason is that costs are incurred to serve area load, rather than a specific number of customers.

Distribution substations costs (which include Accounts 360 -Land and Land Rights, 361 - Structures and Improvements, and 362 -Station Equipment), are normally classified as demand-related. This classification is adopted because substations are normally built to serve a particular load and their size is not affected by the number of customers to be served.

Distribution plant Accounts 364 through 370 involve demand and customer costs. The customer component of distribution facilities is that portion of costs which varies with the number of customers. Thus, the number of poles, conductors, transformers, services, and meters are directly related to the number of customers on the utility's system. As shown in Table 6-1, each primary plant account can be separately classified into a demand and customer component. Two methods are used to determine the demand and customer components of distribution facilities. They are, the minimurn-size-of-facilities method, and the minimum-intercept cost (zero-intercept or positive-intercept cost, as applicable) of facilities.

A. The Minimum-Size Method

Classifying distribution plant with the minimum-size method assumes that a minimum size distribution system can be built to serve the minimum loading requirements of the customer. The minimum-size method involves determining the minimum size pole, conductor, cable, transformer, and service that is currently installed by the utility. Normally, the average book cost for each piece of equipment determines
the price of all installed units. Once determined for each primary plant account, the minimum size distribution system is classified as customer-related costs. The demand-related costs for each account are the difference between the total investment in the account and customer-related costs. Comparative studies between the minimum-size and other methods show that it generally produces a larger customer component than the zero-intercept method (to be discussed). The following describes the methodologies for determining the minimum size for distribution plant Accounts 364, 365, 366, 367, 368, and 369.

1. Account $\mathbf{3 6 4}$-Poles, Towers, and Fixtures

O Determine the average installed book cost of the minimum height pole currently being installed.

O Multiply the average book cost by the number of poles to find the customer component. Balance of plant account is the demand component.
2. Account $\mathbf{3 6 5 - O v e r h e a d ~ C o n d u c t o r s ~ a n d ~ D e v i c e s ~}$
O. Determine minimum size conductor currently being installed.

- Multiply average installed book cost per mile of minimum size conductor by the number of circuit miles to determine the customer component. Balance of plant account is demand component. (Note: two conductors in minimum system.)

3. Accounts 366 and $\mathbf{3 6 7}$ - Underground Conduits, Conductors, and Devices

O Determine minimum size cable currently being installed.

- Multiply average installed book cost per mile of minimum size cable by the circuit miles to determine the customer component. Balance of plant Account 367 is demand component. (Note: one cable with ground sheath is minimum system.) Account 366 conduit is assigned, basedon ratio of cable account.
- Multiply average installed book cost of minimum size transformer by number of transformers in plant account to determine the customer component. Balance of plant account is demand component.

4. Account $\mathbf{3 6 8}$ - Line Transformers

O Determine minimum size transformer currently being installed.

O Multiply average installed book cost of minimum size transformer by number of transformers in plant account to determine the customer component.

5. Account 369 - Services

O Determine minimum size and average length of services currently being installed.

O Estimate cost of minimum size service and multiply by number of services to get customer component.

O If overhead and underground services are booked separately, they should be handled separately. Most companies do not book service by size. This requires an engineering estimate of the cost of the minimum size, average length service. The resultant estimate is usually higher than the average book cost. In addition, the estimate should be adjusted for the average age of service, using a trend factor.

B. The Minimum-Intercept Method

The minimum-intercept method seeks to identify that portion of plant related to a hypothetical no-load or zero-intercept situation. This requires considerably more data and calculation than the minimum-size method. In most instances, it is more accurate, although the differences may be relatively small. The technique is to relate installed cost to current carrying capacity or demand rating, create a curve for various sizes of the equipment involved, using regression techniques, and extend the curve to a no-load intercept. The cost related to the zero-intercept is the customer component. The following describes the methodologies for determining the minimum intercept for distribution-plant Accounts 364, 365, 366, 367, and 368.

1. Account 364 - Poles, Towers, and Fixtures

- Determine the number, investment, and average installed book cost of distribution poles by height and class of pole. (Exclude stubs for guying.)

O Determine minimum intercept of pole cost by creating a regression equation, relating classes and heights of poles, and using the Class 7 cost intercept for each pole of equal height weighted by the number of poles in each height category.

O Multiply minimum intercept cost by total number of distribution poles to get customer component.

